If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x-599=0
a = 1; b = 3; c = -599;
Δ = b2-4ac
Δ = 32-4·1·(-599)
Δ = 2405
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{2405}}{2*1}=\frac{-3-\sqrt{2405}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{2405}}{2*1}=\frac{-3+\sqrt{2405}}{2} $
| 14x-6=13x+7 | | 0.4x–3=3 | | (x+2)^2-6=30 | | 6=2w+w | | 2x+4=4x−2 | | 11x-12=10x+9 | | 2x+4=4x−2, | | 3w–7=–8+7w–2w | | 11x-12=10x=9 | | -12x²+45x+12=0 | | 4(5v+6)(v-2)=0 | | –2y–8=–3y–32 | | √(y+9)=5 | | 164+14x=15x+14 | | -4x+11=10x-94 | | -2x-15=5x+6-7x-9 | | 65=(3x-3)(x) | | 33+5x=6x-3 | | 11x-13=10x+9 | | −25y=−4. | | 8/5=3/2d | | -35u+35=-30u-2 | | 4b^2-4=96 | | 1478=x^2+3x | | (3/5*3)+x=8 | | 0=24x^2-54 | | X*x*2x=300 | | m+2.8=1.3. | | 3/5*5+x=8 | | 9x-5=12x+25 | | x²+0.75x=x-1 | | 2(x+3)=75 |